login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371827
a(n) = Sum_{k=0..floor(n/3)} n^k * binomial(2*n-2*k,n-3*k).
3
1, 2, 6, 23, 94, 392, 1680, 7387, 33110, 150905, 698996, 3287550, 15685420, 75877427, 371994692, 1847450970, 9290557158, 47291312897, 243574276884, 1268915237141, 6683909556420, 35585631836229, 191433293140656, 1040197718292138, 5707318227692796
OFFSET
0,2
FORMULA
a(n) = [x^n] 1/((1-x-n*x^3) * (1-x)^n).
a(n) ~ exp(4*n^(2/3)/3 + 2*n^(1/3)/9) * n^(n/3) / 3. - Vaclav Kotesovec, Apr 07 2024
MATHEMATICA
Join[{1}, Table[Sum[n^k Binomial[2n-2k, n-3k], {k, 0, Floor[n/3]}], {n, 30}]] (* Harvey P. Dale, Aug 10 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\3, n^k*binomial(2*n-2*k, n-3*k));
CROSSREFS
Cf. A368891.
Sequence in context: A191721 A150293 A370285 * A150294 A150295 A150296
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 07 2024
STATUS
approved