login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371826
a(n) = Sum_{k=0..floor(n/2)} n^k * binomial(2*n-k,n-2*k).
3
1, 2, 8, 35, 170, 872, 4740, 26994, 161006, 1001009, 6476976, 43480373, 302250196, 2170406149, 16070240276, 122453910495, 958755921686, 7701233828576, 63381318474768, 533793776053926, 4595440308780620, 40400161269188412, 362367733795887848
OFFSET
0,2
FORMULA
a(n) = [x^n] 1/((1-x-n*x^2) * (1-x)^n).
a(n) ~ exp(3*sqrt(n)/2) * n^(n/2) / 2. - Vaclav Kotesovec, Apr 07 2024
PROG
(PARI) a(n) = sum(k=0, n\2, n^k*binomial(2*n-k, n-2*k));
CROSSREFS
Cf. A171180.
Sequence in context: A007034 A011791 A259757 * A347953 A030847 A030929
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 07 2024
STATUS
approved