login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371823
Triangle T(n, k) read by rows: Maximum number of patterns of length k in a permutation from row n in A371822.
3
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 5, 1, 1, 2, 6, 12, 6, 1, 1, 2, 6, 17, 21, 7, 1, 1, 2, 6, 22, 41, 28, 8, 1, 1, 2, 6, 24, 69, 73, 36, 9, 1, 1, 2, 6, 24, 94, 156, 113, 45, 10, 1, 1, 2, 6, 24, 109, 273, 291, 162, 55, 11, 1, 1, 2, 6, 24, 118, 408, 614, 477, 220, 66, 12, 1, 1, 2, 6, 24, 120, 526, 1094, 1127, 699, 286, 78, 13, 1
OFFSET
1,5
COMMENTS
The row sums agree for n = 1..8 and 10..11 with A088532(n), where n = 11 was the last known value of A088532. The process described in A371822 gives in row 9 the permutation {6,1,9,4,7,2,5,8,3} but the closest optimal permutation would have been: {6,2,9,4,7,1,5,8,3}.
FORMULA
T(n, k) <= A373778(n, k).
Conjecture: T(n, n-2) = ceiling(n*(n-1)/2), for n > 6. This is expected because this triangle does asymptotically approximate the factorial numbers from the left to the right and Pascal's triangle from right to the left.
EXAMPLE
The triangle begins:
n| k: 1| 2| 3| 4| 5| 6| 7| 8| 9
====================================
[1] 1
[2] 1, 1
[3] 1, 2, 1
[4] 1, 2, 4, 1
[5] 1, 2, 6, 5, 1
[6] 1, 2, 6, 12, 6, 1
[7] 1, 2, 6, 17, 21, 7, 1
[8] 1, 2, 6, 22, 41, 28, 8, 1
[9] 1, 2, 6, 24, 69, 73, 36, 9, 1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Thomas Scheuerle, Jun 22 2024
STATUS
approved