OFFSET
1,1
COMMENTS
The base 2 version of A259047. Assuming a(4) exists it is greater than 10^10.
a(4) <= 55133857902732922904331439521901. - Chai Wah Wu, Apr 12 2024
a(1), a(3), the bound on a(4) above, and larger terms can be generated using an adaptation of the method of J. K. Andersen referenced in A259047; see linked Python program for an implementation and two more terms. - Michael S. Branicky, Apr 12 2024
LINKS
Michael S. Branicky, Python program generating terms in A371821
EXAMPLE
177904587 is a term as 177904587 = 3_10 * 7_10 * 103_10 * 233_10 * 353_10 = 11_2 * 111_2 * 1100111_2 * 11101001_2 * 101100001_2 = "11111110011111101001101100001"_2 = 533713761_10, which is divisible by 177904587.
PROG
(Python)
from itertools import count, islice
from sympy import factorint
def A371821_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue, 1)):
f = sorted(factorint(n, multiple=True))
if len(f) > 1:
c = 0
for p in f:
c = ((c<<p.bit_length())+p)%n
if not c:
yield n
(Python)
from sympy import factorint, isprime
def ok(n): return not isprime(n) and int("".join(bin(p)[2:]*e for p, e in factorint(n).items()), 2)%n == 0 # Michael S. Branicky, Apr 12 2024
CROSSREFS
KEYWORD
nonn,base,more,bref
AUTHOR
Scott R. Shannon, Apr 07 2024
STATUS
approved