login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371370
E.g.f. satisfies A(x) = -log(1 - x/(1 - A(x))^2).
4
0, 1, 5, 62, 1246, 34734, 1239708, 53958456, 2771832656, 164151829440, 11010949643640, 825134834757936, 68321156113803360, 6194283782068848816, 610322188305019432032, 64936303681095948453120, 7419917758371561069774336, 906217650382400588573066880
OFFSET
0,3
FORMULA
E.g.f.: Series_Reversion( (1 - x)^2 * (1 - exp(-x)) ).
a(n) = Sum_{k=1..n} (2*n+k-2)!/(2*n-1)! * |Stirling1(n,k)|.
a(n) ~ LambertW(2*exp(3))^n * n^(n-1) / (sqrt(2*(1 + LambertW(2*exp(3)))) * (LambertW(2*exp(3)) - 2)^(3*n-1) * exp(n)). - Vaclav Kotesovec, Sep 10 2024
MATHEMATICA
Table[Sum[(2*n+k-2)!/(2*n-1)! * Abs[StirlingS1[n, k]], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 10 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(serreverse((1-x)^2*(1-exp(-x))))))
(PARI) a(n) = sum(k=1, n, (2*n+k-2)!/(2*n-1)!*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A052842.
Sequence in context: A302181 A357350 A360345 * A307783 A376822 A319624
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 20 2024
STATUS
approved