login
A357350
E.g.f. satisfies A(x) = log(1 + x * exp(A(x))) * exp(2 * A(x)).
4
0, 1, 5, 62, 1210, 32464, 1109988, 46159364, 2261784880, 127625290704, 8150589862080, 581192861530368, 45772039038334464, 3945903751253912928, 369585982325018567808, 37372951572516507717120, 4057994343926975346772992, 470900282395259211311765760
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (n+2*k)^(k-1) * Stirling1(n,k).
E.g.f.: Series_Reversion( exp(-x) * (exp(x * exp(-2*x)) - 1) ). - Seiichi Manyama, Sep 10 2024
PROG
(PARI) a(n) = sum(k=1, n, (n+2*k)^(k-1)*stirling(n, k, 1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 25 2022
STATUS
approved