login
A371368
Expansion of (1/x) * Series_Reversion( x * (1-7*x)^2 / (1-6*x) ).
0
1, 8, 127, 2514, 55679, 1320530, 32800020, 842314362, 22182639823, 595816941756, 16259068712391, 449504473152288, 12563255467347012, 354392729335581224, 10076681024065204760, 288500953324319325402, 8310071739586606559151
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 6^(n-k) * binomial(2*n+k+1,k) * binomial(2*n,n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-7*x)^2/(1-6*x))/x)
(PARI) a(n) = sum(k=0, n, 6^(n-k)*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);
CROSSREFS
Cf. A081178.
Sequence in context: A355766 A029472 A001081 * A178790 A297214 A034220
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 19 2024
STATUS
approved