OFFSET
1,1
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..450
IBM Research, Tetrahedron Volumes, Ponder This Challenge November 2024.
Sascha Kurz, Enumeration of integral tetrahedra, arXiv:0804.1310 [math.CO], 2008.
Hugo Pfoertner, Plot of log_10(n) vs n, using Plot 2.
EXAMPLE
a(1) = 2 corresponds to the regular tetrahedron with all edges equal to 1. Its volume is sqrt(2/144) = 0.11785113...
PROG
(PARI) \\ See A371345. Replace final #Set(Vec(L)) by vecmin(Vec(L))/2
\\ Second version using simple minded loops and triangle inequalities
\\ Not suitable for larger n
a371344(n) = {my (Vmin=oo, w=vector(6)); w[1]=n; for(w2=1, n, w[2]=w2; for(w3=1, n, w[3]=w3; for(w4=1, n, w[4]=w4; for(w5=1, n, w[5]=w5; for(w6=1, n, w[6]=w6;
forperm (w, v, if(v[4]+v[5]<v[6], next); if(v[4]+v[6]<v[5], next); if(v[5]+v[6]<v[4], next); if(v[1]+v[2]<v[4], next); if(v[1]+v[4]<v[2], next); if(v[2]+v[4]<v[1], next); if(v[1]+v[3]<v[5], next); if(v[1]+v[5]<v[3], next); if(v[3]+v[5]<v[1], next); if(v[2]+v[3]<v[6], next); if(v[2]+v[6]<v[3], next); if(v[3]+v[6]<v[2], next); my(CM=matdet ([0, 1, 1, 1, 1; 1, 0, v[1]^2, v[2]^2, v[3]^2; 1, v[1]^2, 0, v[4]^2, v[5]^2; 1, v[2]^2, v[4]^2, 0, v[6]^2; 1, v[3]^2, v[5]^2, v[6]^2, 0])); if (CM>0, Vmin=min(Vmin, CM)))))))); Vmin/2}; \\ return value corrected by M. F. Hasler, Dec 02 2024
(PARI) /* equivalent to the preceding, but simplified */
A371344(n) = {my (Vmin=oo, CM, n2=n^2); forvec(v=vector(5, k, [1, n]), v[4]+v[5]<n || v[1]+v[2]<v[4] || v[1]+v[4]<v[2] || v[2]+v[4]<v[1] || v[1]+v[3]<v[5] || v[1]+v[5]<v[3] || v[3]+v[5]<v[1] || v[2]+v[3]<n || v[2]+n<v[3] || v[3]+n<v[2] || (CM=matdet([0, 1, 1, 1, 1; 1, 0, v[1]^2, v[2]^2, v[3]^2; 1, v[1]^2, 0, v[4]^2, v[5]^2; 1, v[2]^2, v[4]^2, 0, n2; 1, v[3]^2, v[5]^2, n2, 0]))<=0 || CM >= Vmin || Vmin=CM); Vmin/2} \\ M. F. Hasler, Dec 02 2024
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Hugo Pfoertner, Mar 19 2024
EXTENSIONS
a(33), a(37), a(38), and a(43) corrected by Hugo Pfoertner, Dec 03 2024
STATUS
approved