login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371303
Numbers k > 4 such that both k - 2^(2^m) and k + 2^(2^m) are prime for every natural m > 0 with 2^(2^m) < k.
0
7, 9, 15, 27, 57, 63, 195, 267, 363, 405, 483, 603, 1197, 1233, 1443, 1737, 2715, 4257, 5403, 6117, 21855, 22287, 26817, 40755, 63777, 260007, 617253, 986733, 1151655, 1167837, 1174503, 1199373, 1331595, 3233307, 4128873, 4138707, 4609527, 5938107, 7203945, 7605213, 8379405, 8587545, 9596223
OFFSET
1,1
COMMENTS
It seems that there are infinitely many such numbers.
If k > 7 is such a number, then it is odd and divisible by 3.
Conjecture: numbers k > 2 such that both k - 2^(2^m) and k + 2^(2^m) are prime for every integer m >= 0 with 2^(2^m) < k are only 9, 15, and 195 (Amiram Eldar checked that there are no more terms k < 10^8).
MATHEMATICA
q[k_] := Module[{m = 1}, While[2^(2^m) < k && PrimeQ[k - 2^(2^m)] && PrimeQ[k + 2^(2^m)], m++]; 2^(2^m) > k]; Select[Range[5, 10^6, 2], q] (* Amiram Eldar, Mar 18 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Mar 18 2024
EXTENSIONS
More terms from Amiram Eldar, Mar 18 2024
STATUS
approved