OFFSET
1,1
COMMENTS
It seems that there are infinitely many such numbers.
If k > 7 is such a number, then it is odd and divisible by 3.
Conjecture: numbers k > 2 such that both k - 2^(2^m) and k + 2^(2^m) are prime for every integer m >= 0 with 2^(2^m) < k are only 9, 15, and 195 (Amiram Eldar checked that there are no more terms k < 10^8).
MATHEMATICA
q[k_] := Module[{m = 1}, While[2^(2^m) < k && PrimeQ[k - 2^(2^m)] && PrimeQ[k + 2^(2^m)], m++]; 2^(2^m) > k]; Select[Range[5, 10^6, 2], q] (* Amiram Eldar, Mar 18 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Mar 18 2024
EXTENSIONS
More terms from Amiram Eldar, Mar 18 2024
STATUS
approved