login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370970
Numbers k which have a factorization k = f1*f2*...*fr where the digits of {k, f1, f2, ..., fr} together give 0,1,...,9 exactly once.
8
8596, 8790, 9360, 9380, 9870, 10752, 12780, 14760, 14820, 15628, 15678, 16038, 16704, 17082, 17820, 17920, 18720, 19084, 19240, 20457, 20574, 20754, 21658, 24056, 24507, 25803, 26180, 26910, 27504, 28156, 28651, 30296, 30576, 30752, 31920, 32760, 32890, 34902, 36508, 47320, 58401, 65128, 65821
OFFSET
1,1
COMMENTS
The total number of digits in k, f1, ..., fr is ten, and they are all distinct.
LINKS
Hans Havermann, Pandigital Products, Apr 13 2024
EXAMPLE
The complete list of terms:
8596 = 2*14*307
8790 = 2*3*1465
9360 = 2*4*15*78
9380 = 2*5*14*67
9870 = 2*3*1645
10752 = 3*4*896
12780 = 4*5*639
14760 = 5*9*328
14820 = 5*39*76
15628 = 4*3907
15678 = 39*402
16038 = 27*594 = 54*297
16704 = 9*32*58
17082 = 3*5694
17820 = 36*495 = 45*396
17920 = 8*35*64
18720 = 4*5*936
19084 = 52*367
19240 = 8*37*65
20457 = 3*6819
20574 = 6*9*381
20754 = 3*6918
21658 = 7*3094
24056 = 8*31*97
24507 = 3*8169
25803 = 9*47*61
26180 = 4*7*935
26910 = 78*345
27504 = 3*9168
28156 = 4*7039
28651 = 7*4093
30296 = 7*8*541
30576 = 8*42*91
30752 = 4*8*961
31920 = 5*76*84
32760 = 8*45*91
32890 = 46*715
34902 = 6*5817
36508 = 4*9127
47320 = 8*65*91
58401 = 63*927
65128 = 7*9304
65821 = 7*9403
CROSSREFS
Sequence in context: A324711 A221053 A370972 * A116326 A031809 A252471
KEYWORD
nonn,base,fini,full
AUTHOR
N. J. A. Sloane, Apr 13 2024, following emails from Ed Pegg Jr and Hans Havermann. The terms were computed by Hans Havermann.
STATUS
approved