login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324711
Number x such that sigma(x) = Sum_{i=1..k} {sigma(x/p_i)}, where p_i are the k prime factors of x.
3
8580, 16632, 24840, 35910, 38280, 53130, 161040, 186732, 276276, 429780, 598290, 833112, 1232616, 1297890, 1631448, 2661330, 2781000, 2875740, 3111108, 3233790, 3449640, 3504816, 3754920, 4901160, 5185488, 5211570, 5948250, 6749028, 8066640, 9006984, 10750080
OFFSET
1,1
LINKS
EXAMPLE
Prime factors of 8580 are 2, 3, 5, 11, 13 and sigma(8580) = 28224, sigma(8580/2) + sigma(8580/3) + sigma(8580/5) + sigma(8580/11) + sigma(8580/13) = 12096 + 7056 + 4704 + 2352 + 2016 = 28224.
MAPLE
with(numtheory): P:=proc(q) local k, n; for n from 1 to q do
if sigma(n)=add(sigma(n/k), k=factorset(n)) then print(n);
fi; od; end: P(10^9);
MATHEMATICA
Select[Range[2, 60000], DivisorSigma[1, #] == Total@DivisorSigma[1, #/FactorInteger[#][[;; , 1]]] &] (* Amiram Eldar, Mar 20 2019 *)
PROG
(PARI) isok(x) = my(f=factor(x)[, 1]~); sigma(x) == sum(k=1, #f, sigma(x/f[k])); \\ Michel Marcus, Mar 15 2019
CROSSREFS
Sequence in context: A243839 A287119 A156846 * A221053 A370972 A370970
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Mar 13 2019
STATUS
approved