login
A381073
Numbers k such that k and k+2 are both terms in A380846.
0
8596, 9772, 10444, 17836, 19626, 21196, 23716, 27186, 35754, 36484, 38164, 42700, 45892, 54796, 56586, 85708, 91252, 98586, 100770, 104970, 112698, 132412, 136612, 139074, 140980, 141652, 144676, 149716, 152850, 165172, 166122, 171724, 182032, 182644, 184770, 190482
OFFSET
1,1
COMMENTS
Numbers k such that A380845(k) = 2*k and A380845(k+2) = 2*(k+2).
LINKS
MATHEMATICA
f[n_] := Module[{h = DigitCount[n, 2, 1]}, DivisorSum[n, # &, DigitCount[#, 2, 1] == h &] == 2*n]; seq[lim_] := Module[{q = Table[False, {4}], s = {}}, q[[1 ;; 2]] = f /@ Range[2]; Do[q[[3 ;; 4]] = f /@ Range[k, k + 1]; If[q[[1]] && q[[3]], AppendTo[s, k - 2]]; If[q[[2]] && q[[4]], AppendTo[s, k - 1]]; q[[1 ;; 2]] = q[[3 ;; 4]], {k, 3, lim, 2}]; s]; seq[50000]
PROG
(PARI) is1(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) == 2*k; }
list(lim) = {my(q1 = is1(1), q2 = is1(2), q3, q4); forstep(k = 3, lim, 2, q3 = is1(k); q4 = is1(k+1); if(q1 && q3, print1(k-2, ", ")); if(q2 && q4, print1(k-1, ", ")); q1 = q3; q2 = q4); }
CROSSREFS
Subsequence of A380846.
A381074 is a subsequence.
Cf. A380845.
Sequence in context: A221053 A370972 A370970 * A116326 A031809 A252471
KEYWORD
nonn,base,new
AUTHOR
Amiram Eldar, Feb 13 2025
STATUS
approved