login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370685
Semiprimes that are also the sums of two, three and four successive semiprimes.
2
2045, 2705, 2855, 14614, 18838, 28437, 31299, 43603, 68807, 76841, 77386, 88041, 108415, 116822, 194605, 213679, 218729, 252094, 255202, 269653, 290449, 294683, 302761, 305362, 310799, 339382, 348242, 361055, 398111, 445066, 445174, 459761, 464567, 489809, 496081, 501386, 515981, 534777, 544405
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 2855 is a term because 2855 = 5 * 571 is a semiprime, A001358(423) = 1418 = 2*709 and A001358(424) = 1437 = 3 * 479 are two successive semiprimes whose sum is 2855, A001358(285) = 949 = 13 * 73, A001358(286) = 951 = 3 * 317 and A001358(287) = 955 = 5 * 191 are three successive semiprimes whose sum is 2855, and A001358(216) = 707 = 7 * 101, A001358(217) = 713 = 23 * 31, A001358(218) = 717 = 3 * 239, A001358(219) = 718 = 2 * 359 are four successive semiprimes whose sum is 2855.
MAPLE
N:= 10^6: # for terms <= N
P:= select(isprime, [2, seq(i, i=3..N/2, 2)]):
nP:= nops(P):
SP:= 0:
for i from 1 while P[i]^2 <= N do
m:= ListTools:-BinaryPlace(P, N/P[i]);
SP:= SP, op(P[i]*P[i..m]);
od:
SP:= sort([SP]):
SS:= ListTools:-PartialSums(SP):
SS2:= {seq(SS[i]-SS[i-2], i=3..nops(SS))}:
SS3:= {seq(SS[i]-SS[i-3], i=4..nops(SS))}:
SS4:= {seq(SS[i]-SS[i-4], i=5..nops(SS))}:
A:=SS2 intersect SS3 intersect SS4 intersect convert(SP, set):
A:= sort(convert(A, list)):
CROSSREFS
Cf. A001358, A370162. Intersection of A092192, A131610 and A158339.
Sequence in context: A115553 A068264 A024021 * A298756 A145590 A241039
KEYWORD
nonn
AUTHOR
Robert Israel, Feb 26 2024
STATUS
approved