login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A370686
a(n) is the number of 132-avoiding permutations p so that p^3 is the identity permutation.
0
1, 1, 1, 3, 5, 7, 17, 31, 49, 107, 201, 339, 699, 1327, 2327, 4643, 8843, 15895, 31099, 59251, 108239, 209239, 398355, 735619, 1411351, 2684147, 4993111, 9533775, 18112735, 33863375, 64457715, 122348279, 229537011, 436029791, 827012339, 1555314327, 2950532447, 5592873575, 10536068991
OFFSET
0,4
COMMENTS
a(n) is the number of 132-avoiding permutations composed only of 3-cycles and fixed points.
LINKS
Kassie Archer and Robert P. Laudone, Pattern-restricted permutations of small order, arXiv:2402.15463 [math.CO], 2024.
FORMULA
G.f.: c(x^3)/(sqrt(c(x^3)*(4-3*c(x^3)))-x*c(x^3)) where c(x) is the generating function for the Catalan numbers.
PROG
(PARI) my(N=44, x='x+O('x^N), C(x)=(1-sqrt(1-4*x))/(2*x)); Vec(C(x^3)/(sqrt(C(x^3)*(4-3*C(x^3)))-x*C(x^3))) \\ Joerg Arndt, Feb 27 2024
CROSSREFS
Sequence in context: A002092 A274906 A296422 * A174394 A057476 A016041
KEYWORD
nonn
AUTHOR
Kassie Archer, Feb 26 2024
STATUS
approved