OFFSET
0,4
COMMENTS
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
All terms are odd.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..400
Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
Wikipedia, Acyclic orientation
Wikipedia, Multipartite graph
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
b:= proc(t, n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, t!*(-1)^t, add(coeff(g(i), x, m)*
b(t+m, n-i, min(n-i, i-1)), m=0..i)+b(t, n, i-1)))
end:
a:= n-> abs(b(0, n$2)):
seq(a(n), n=0..22);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 30 2024
STATUS
approved