login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372395
Total number of acyclic orientations in all complete multipartite graphs K_lambda, where lambda ranges over all partitions of n.
3
1, 1, 3, 11, 65, 411, 3535, 31081, 337185, 3846557, 50329253, 691740489, 10725769171, 172411994899, 3050277039465, 56428854605627, 1124781474310649, 23349607769846667, 518744693882444419, 11949343411110856153, 291921874093876965453, 7395266131906154621501
OFFSET
0,3
COMMENTS
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
All terms are odd.
LINKS
Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
b:= proc(t, n, i) option remember; `if`(n=0, t!*(-1)^t,
`if`(i<1, 0, b(t, n, i-1)+add(coeff(g(i), x, m)*
b(t+m, n-i, min(n-i, i)), m=0..i)))
end:
a:= n-> abs(b(0, n$2)):
seq(a(n), n=0..21);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
b[t_, n_, i_] := b[t, n, i] = If[n == 0, t!*(-1)^t, If[i < 1, 0, b[t, n, i - 1] + Sum[Coefficient[g[i], x, m]*b[t + m, n - i, Min[n - i, i]], {m, 0, i}]]];
a[n_] := Abs[b[0, n, n]];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 24 2024, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 29 2024
STATUS
approved