login
A179100
a(n) = (1/n) * Sum_{k=0..n-1} (8k+5) T_k^2, where T_0, T_1, ... are central trinomial coefficients given by A002426.
0
5, 9, 69, 407, 2997, 22005, 169389, 1325889, 10573677, 85386881, 697013325, 5739021051, 47599593941, 397234035333, 3332690347437, 28089543969855, 237711099004461, 2018856328439841, 17200553934626253, 146966002696538271
OFFSET
1,1
COMMENTS
On Jun 17 2010, Zhi-Wei Sun conjectured that a(n) is an integer for every n=1,2,3,... and that a(p) == 3(p/3) (mod p) for any prime p, where (p/3) is the Legendre symbol. He also observed that Sum_{k=0..n-1} (2k+1) T_k*3^{n-1-k} = n * Sum_{k=0..n-1} C(n-1,k)*(-1)^(n-1-k)*(k+1)*C(2k,k).
LINKS
Zhi-Wei Sun, Arithmetic properties of Apery numbers and central Delannoy numbers, preprint, arXiv:1006.2776 [math.NT], 2010-2011.
EXAMPLE
For n=3 we have a(3) = (5*T_0^2 + 13*T_1^2 + 21*T_2^2)/3 = (5 + 13 + 21*9)/3 = 69.
MATHEMATICA
TT[n_]:=Sum[Binomial[n, 2k]Binomial[2k, k], {k, 0, Floor[n/2]}] SS[n_]:=Sum[(8k+5)*TT[k]^2, {k, 0, n-1}]/n Table[SS[n], {n, 1, 50}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jun 29 2010
STATUS
approved