login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370079
The product of the odd exponents of the prime factorization of n.
2
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
First differs from A363329 at n = 32.
LINKS
FORMULA
a(n) = A005361(A350389(n)).
Multiplicative with a(p^e) = e if e is odd, and 1 if e is even.
a(n) = A005361(n)/A370080(n).
a(n) >= 1, with equality if and only if n is in A335275.
a(n) <= A005361(n), with equality if and only if n is an exponentially odd number (A268335).
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) + 1/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4) = 1.32800597172596287374... .
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 2/((p^s - 1)*(p^s + 1)^2)). - Vaclav Kotesovec, Feb 11 2024
MATHEMATICA
f[p_, e_] := If[OddQ[e], e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> if(x%2, x, 1), factor(n)[, 2]));
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Feb 09 2024
STATUS
approved