login
A370074
Expansion of (1 - 2*x) * (1 - 4*x + 2*x^2) / (1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5).
2
1, 3, 9, 28, 90, 297, 1001, 3432, 11933, 41971, 149017, 533141, 1919215, 6942950, 25215181, 91858456, 335449202, 1227312350, 4496994689, 16496266812, 60566602692, 222524531559, 817997639090, 3008175954887, 11066005530460, 40717739034761
OFFSET
0,2
COMMENTS
The sequence is constructed from a truncated version of Pascal's Triangle.
1
1 1
1 2 1
3 3 1
3 6 4 1
9 10 5 1
9 19 15 6 1
28 34 21 7 1
28 62 55 28 8
90 117 83 36 8
90 207 200 119 44
297 407 319 163 44
...
After truncation the sequence appears as the left vertical column. The right column sequence can be found in A370568. a(n) arises from the Gambler's Ruin problem and it represents the number of ways a gambler is ruined in the Gambler's Ruin problem starting with $3 and with a maximum $11 causing retirement.
FORMULA
a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5) for n >= 5.
MATHEMATICA
LinearRecurrence[{9, -28, 35, -15, 1}, {1, 3, 9, 28, 90}, 26] (* James C. McMahon, Mar 12 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Morris, Feb 08 2024
STATUS
approved