OFFSET
0,3
COMMENTS
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 3. - Herbert Kociemba, Jun 14 2004
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..1792
László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
FORMULA
G.f.: (-x^4+6x^3-5x^2+x)/((1-3x+x^2)*(1-5x+5x^2)).
From Herbert Kociemba, Jun 14 2004: (Start)
a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(3*r*Pi/10)*(2*cos(r*Pi/10))^(2*n), n >= 1.
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), n >= 5. (End)
From Greg Dresden, Jan 24 2021: (Start)
a(2n) = (5*Fibonacci(4*n) + (5^n)*Lucas(2*n))/10 for n > 0.
a(2n+1) = (Fibonacci(4*n+2) + (5^n)*Fibonacci(2*n+1))/2 for n >= 0.
(End)
MAPLE
A033190 := proc(n)
add(binomial(n, k)*binomial(combinat[fibonacci](k)+1, 2), k=0..n) ;
end proc: # R. J. Mathar, Feb 18 2016
MATHEMATICA
LinearRecurrence[{8, -21, 20, -5}, {0, 1, 3, 9, 28}, 30] (* Harvey P. Dale, Jan 24 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved