login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369970
Numbers k such that A003415(k) is a multiple of A276086(k), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
5
0, 1, 6, 2315, 510510
OFFSET
1,3
COMMENTS
For the general dynamics of this phenomenon, see the scatter plots of A351231 and A351233.
Question: Are the terms by necessity all squarefree?
As a subsequence this sequence includes all primorials with indices k such that A024451(k) is a multiple of A000040(1+k). See A369972 and A369973.
872415232 < a(6) <= 13082761331670030 [= A369973(4)].
EXAMPLE
2315 is included as A003415(2315) = 5+463 = 468 = 2^2 * 3^2 * 13 (note that 2315 is a semiprime = 5*463, thus its arithmetic derivative is the sum of its two prime factors), and because that 468 is a multiple of A276086(2315) = 234 = 2 * 3^2 * 13 [the exponents of primes are here read from the primorial base expansion of 2315, A049345(2315) = 100021].
510510 is included because A003415(510510) = 19*37693, which is a multiple of A276086(510510) = 19.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
isA369970(n) = !(A003415(n)%A276086(n));
CROSSREFS
Cf. A000040, A003415, A024451, A276086, A369972, A369973 (subsequence).
Positions of 1's in A351231, positions of 0's in A351233 and in A369971.
After the two initial terms, a subsequence of A351228.
Cf. also A358221.
Sequence in context: A254005 A279654 A198403 * A279533 A069643 A264801
KEYWORD
nonn,hard,more
AUTHOR
Antti Karttunen, Feb 07 2024
STATUS
approved