login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369706
Maximal coefficient of (1 + x^2) * (1 + x^3) * (1 + x^4) * ... * (1 + x^n).
0
1, 1, 1, 1, 1, 2, 3, 4, 7, 12, 20, 35, 62, 112, 199, 361, 657, 1206, 2221, 4110, 7636, 14234, 26618, 49910, 93846, 176906, 334184, 632602, 1199892, 2280164, 4340064, 8273610, 15796439, 30202620, 57820648, 110826888, 212681976, 408610024, 785833480, 1512776590, 2915017360
OFFSET
0,6
FORMULA
a(n) ~ A025591(n)/2. - Vaclav Kotesovec, Jan 29 2024
MAPLE
b:= proc(n) option remember; `if`(n<2, 1, expand(b(n-1)*(1+x^n))) end:
a:= n-> max(coeffs(b(n))):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 29 2024
MATHEMATICA
Table[Max[CoefficientList[Product[(1 + x^k), {k, 2, n}], x]], {n, 0, 40}]
PROG
(PARI) a(n) = vecmax(Vec(prod(i=2, n, 1+x^i))); \\ Michel Marcus, Jan 29 2024
CROSSREFS
Sequence in context: A357532 A018148 A084972 * A307673 A141002 A006537
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 29 2024
STATUS
approved