login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369704
Number of pairs (p,q) of partitions of n such that the set of parts in q is a subset of the set of parts in p.
3
1, 1, 2, 4, 8, 13, 28, 43, 84, 137, 243, 372, 684, 1010, 1702, 2620, 4256, 6276, 10134, 14740, 23094, 33742, 51139, 73550, 111303, 158140, 233006, 331099, 481324, 674778, 973928, 1353504, 1925734, 2668263, 3748636, 5153887, 7201684, 9820055, 13572468, 18445878
OFFSET
0,3
LINKS
FORMULA
a(n) = A000041(n) + A369707(n).
EXAMPLE
a(5) = 13: (11111, 11111), (2111, 11111), (2111, 2111), (2111, 221), (221, 11111), (221, 2111), (221, 221), (311, 11111), (311, 311), (32, 32), (41, 11111), (41, 41), (5, 5).
MAPLE
b:= proc(n, m, i) option remember; `if`(n=0,
`if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(
add(b(n-i*j, m-i*h, i-1), h=0..m/i), j=1..n/i)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..42);
MATHEMATICA
b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i - 1] + Sum[Sum[b[n - i*j, m - i*h, i - 1], {h, 0, m/i}], { j, 1, n/i}]]];
a[n_] := b[n, n, n];
Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 29 2024
STATUS
approved