login
A369667
a(n) = 1 if n' == 3 (mod 4) and n has an even number of prime factors with multiplicity, otherwise 0. Here n' stands for the arithmetic derivative of n, A003415(n).
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
0
FORMULA
These formulas should be computed with a shortcut multiplication, which ignores the right hand side expression if the left hand side yields zero:
a(n) = A358773(n) * A065043(n).
a(n) = [A003415(n) == 3 (mod 4)] * [A001222(n) == 0 (mod 2)], where [ ] is the Iverson bracket.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A369667(n) = ((3==(A003415(n)%4)) && !(bigomega(n)%2));
CROSSREFS
Characteristic function of A369668.
Sequence in context: A023973 A297040 A185705 * A358773 A044941 A368699
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 08 2024
STATUS
approved