login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A369630
Expansion of (1/x) * Series_Reversion( x * (1/(1+x^3) - x) ).
2
1, 1, 2, 6, 20, 70, 255, 960, 3707, 14598, 58395, 236626, 969275, 4007041, 16696822, 70053159, 295691622, 1254772103, 5349978803, 22907982780, 98466168572, 424713570017, 1837717336614, 7974744620620, 34698200181696, 151341512079231, 661590732178716
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n-3*k+1,k) * binomial(2*n-3*k,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1+x^3)-x))/x)
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-3*k+1, k)*binomial(2*n-3*k, n-3*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 28 2024
STATUS
approved