login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369627
Expansion of 1/(1 - x^2/(1-9*x)^(1/3)).
2
1, 0, 1, 3, 19, 132, 991, 7740, 62020, 505857, 4180132, 34889514, 293518072, 2485191753, 21153817090, 180865139538, 1552289627872, 13366436688402, 115425148203235, 999256943147094, 8670047414816233, 75375298322580081, 656465004512563546
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/2)} 9^(n-2*k) * binomial(n-1-5*k/3,n-2*k).
a(n) ~ (r-9)^(4/3) * r^(5/3) * r^n / (2*r-15), where r = 9.0000169349284790514638157821699098461789951085871459872133... = is the largest real root of the equation r^5*(r-9) = 1. - Vaclav Kotesovec, Feb 19 2024
MATHEMATICA
CoefficientList[Series[1/(1 - x^2/(1-9*x)^(1/3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 19 2024 *)
Flatten[{{1, 0, 1, 3, 19, 132}, RecurrenceTable[{9 (-12 + n) (-19 + 3 n) (-14 + 3 n) a[-8 + n] - 6 (-628 + 368 n - 63 n^2 + 3 n^3) a[-7 + n] + (-13 + n) (-4 + n) (-2 + n) a[-6 + n] + 81 (-12 + n) (-19 + 3 n) (-14 + 3 n) a[-3 + n] - 9 (-6960 + 3662 n - 585 n^2 + 27 n^3) a[-2 + n] + 3 (-14 + 3 n) (112 - 47 n + 3 n^2) a[-1 + n] - (-13 + n) (-4 + n) (-2 + n) a[n] == 0, a[6] == 991, a[7] == 7740, a[8] == 62020, a[9] == 505857, a[10] == 4180132, a[11] == 34889514, a[12] == 293518072, a[13] == 2485191753}, a, {n, 6, 20}]}] (* Vaclav Kotesovec, Feb 19 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-x^2/(1-9*x)^(1/3)))
CROSSREFS
Cf. A104625.
Sequence in context: A226459 A256092 A370159 * A074567 A332621 A091346
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 06 2024
STATUS
approved