Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 19 2024 11:40:19
%S 1,0,1,3,19,132,991,7740,62020,505857,4180132,34889514,293518072,
%T 2485191753,21153817090,180865139538,1552289627872,13366436688402,
%U 115425148203235,999256943147094,8670047414816233,75375298322580081,656465004512563546
%N Expansion of 1/(1 - x^2/(1-9*x)^(1/3)).
%H Vaclav Kotesovec, <a href="/A369627/a369627.jpg">Graph - the asymptotic ratio (300000 terms)</a>
%F a(n) = Sum_{k=0..floor(n/2)} 9^(n-2*k) * binomial(n-1-5*k/3,n-2*k).
%F a(n) ~ (r-9)^(4/3) * r^(5/3) * r^n / (2*r-15), where r = 9.0000169349284790514638157821699098461789951085871459872133... = is the largest real root of the equation r^5*(r-9) = 1. - _Vaclav Kotesovec_, Feb 19 2024
%t CoefficientList[Series[1/(1 - x^2/(1-9*x)^(1/3)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 19 2024 *)
%t Flatten[{{1, 0, 1, 3, 19, 132}, RecurrenceTable[{9 (-12 + n) (-19 + 3 n) (-14 + 3 n) a[-8 + n] - 6 (-628 + 368 n - 63 n^2 + 3 n^3) a[-7 + n] + (-13 + n) (-4 + n) (-2 + n) a[-6 + n] + 81 (-12 + n) (-19 + 3 n) (-14 + 3 n) a[-3 + n] - 9 (-6960 + 3662 n - 585 n^2 + 27 n^3) a[-2 + n] + 3 (-14 + 3 n) (112 - 47 n + 3 n^2) a[-1 + n] - (-13 + n) (-4 + n) (-2 + n) a[n] == 0, a[6] == 991, a[7] == 7740, a[8] == 62020, a[9] == 505857, a[10] == 4180132, a[11] == 34889514, a[12] == 293518072, a[13] == 2485191753}, a, {n, 6, 20}]}] (* _Vaclav Kotesovec_, Feb 19 2024 *)
%o (PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-x^2/(1-9*x)^(1/3)))
%Y Cf. A362206, A369940.
%Y Cf. A104625.
%K nonn
%O 0,4
%A _Seiichi Manyama_, Feb 06 2024