login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369343
a(n) is the constant term in expansion of Product_{k=1..n} (x^(2*k-1) + 1 + 1/x^(2*k-1)).
2
1, 1, 1, 1, 3, 9, 21, 49, 117, 295, 761, 1993, 5261, 14025, 37699, 102151, 278587, 764145, 2106433, 5832863, 16217191, 45255167, 126708863, 355848715, 1002145705, 2829479797, 8007670701, 22711890561, 64547494347, 183790615881, 524239904367, 1497786769295
OFFSET
0,5
COMMENTS
All terms are odd.
LINKS
FORMULA
a(n) ~ 3^(n+1) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jan 21 2024
MAPLE
b:= proc(n, i) option remember; `if`(n>i^2, 0, `if`(i=0, 1,
b(n, i-1)+b(n+2*i-1, i-1)+b(abs(n-2*i+1), i-1)))
end:
a:= n-> b(0, n):
seq(a(n), n=0..33); # Alois P. Heinz, Jan 21 2024
MATHEMATICA
Table[Coefficient[Product[x^(2 k - 1) + 1 + 1/x^(2 k - 1), {k, 1, n}], x, 0], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 20 2024
STATUS
approved