login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A369305 Number of terms in A343524 that are less than 10^n. 0
1, 10, 19, 55, 91, 175, 259, 385, 511, 637, 763, 847, 931, 967, 1003, 1012, 1021, 1022, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The tallied terms (A343524) are palindromes with digits strictly increasing up to the midpoint.
LINKS
FORMULA
a(n) = 1023 for n >= 18. - Michael S. Branicky, Jan 22 2024
a(n) = Sum_{k=1..n+1} binomial(9,floor(k/2)). - Andrew Howroyd, Jan 22 2024
G.f.: (-x^18 - x^17 - 9*x^16 - 9*x^15 - 36*x^14 - 36*x^13 - 84*x^12 - 84*x^11 - 126*x^10 - 126*x^9 - 126*x^8 - 126*x^7 - 84*x^6 - 84*x^5 - 36*x^4 - 36*x^3 - 9*x^2 - 9*x - 1)/(x - 1). - Chai Wah Wu, Jun 15 2024
EXAMPLE
For n = 0, 10^0 = 1, there is a single A343524 term less than 1: 0.
For n = 2, 10^2 = 100, there are 19 A343524 terms less than 100: 0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99.
Examples of A343524 terms less than 100000: 1661, 28982.
PROG
(PARI) a(n)=sum(k=1, min(n, 18)+1, binomial(9, k\2)) \\ Andrew Howroyd, Jan 22 2024
(Python)
from math import comb
def a(n):
if n > 18: return 1023
return 1+sum(comb(9, (digits+1)//2) for digits in range(1, n+1))
print([a(n) for n in range(47)]) # Michael S. Branicky, Jan 22 2024
CROSSREFS
Sequence in context: A219959 A307344 A330570 * A065198 A033866 A023109
KEYWORD
nonn,base,easy
AUTHOR
James S. DeArmon, Jan 19 2024
EXTENSIONS
a(11) and beyond from Michael S. Branicky, Jan 22 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 11 01:27 EDT 2024. Contains 375813 sequences. (Running on oeis4.)