|
|
A369305
|
|
Number of terms in A343524 that are less than 10^n.
|
|
0
|
|
|
1, 10, 19, 55, 91, 175, 259, 385, 511, 637, 763, 847, 931, 967, 1003, 1012, 1021, 1022, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The tallied terms (A343524) are palindromes with digits strictly increasing up to the midpoint.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..n+1} binomial(9,floor(k/2)). - Andrew Howroyd, Jan 22 2024
G.f.: (-x^18 - x^17 - 9*x^16 - 9*x^15 - 36*x^14 - 36*x^13 - 84*x^12 - 84*x^11 - 126*x^10 - 126*x^9 - 126*x^8 - 126*x^7 - 84*x^6 - 84*x^5 - 36*x^4 - 36*x^3 - 9*x^2 - 9*x - 1)/(x - 1). - Chai Wah Wu, Jun 15 2024
|
|
EXAMPLE
|
For n = 0, 10^0 = 1, there is a single A343524 term less than 1: 0.
For n = 2, 10^2 = 100, there are 19 A343524 terms less than 100: 0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99.
Examples of A343524 terms less than 100000: 1661, 28982.
|
|
PROG
|
(PARI) a(n)=sum(k=1, min(n, 18)+1, binomial(9, k\2)) \\ Andrew Howroyd, Jan 22 2024
(Python)
from math import comb
def a(n):
if n > 18: return 1023
return 1+sum(comb(9, (digits+1)//2) for digits in range(1, n+1))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|