login
A330570
Partial sums of A097988 (d_3(n)^2).
16
1, 10, 19, 55, 64, 145, 154, 254, 290, 371, 380, 704, 713, 794, 875, 1100, 1109, 1433, 1442, 1766, 1847, 1928, 1937, 2837, 2873, 2954, 3054, 3378, 3387, 4116, 4125, 4566, 4647, 4728, 4809, 6105, 6114, 6195, 6276, 7176, 7185, 7914, 7923, 8247, 8571, 8652, 8661, 10686, 10722, 11046, 11127, 11451, 11460, 12360
OFFSET
1,2
COMMENTS
This and the following sequences (and continuing in A331071) were inspired by the papers of Hooley, Indlekofer, Motohashi, Redmond, Titchmarsh, etc.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Vincenzo Librandi)
V. C. Harris and M. V. Subbarao, On the divisor sum function, The Rocky Mountain Journal of Mathematics, Vol. 15, No. 2 (1985), pp 399-412; alternative link.
C. Hooley, An Asymptotic Formula in the Theory of Numbers, Proceedings of the London Mathematical Society, Volume s3-7, Issue 1, 1957, Pages 396-413.
Karl-Heinz Indlekofer, Eine asymptotische Formel in der Zahlentheorie (German), Arch. Math. (Basel) 23 (1972), 619-624. MR0318080 (47 #6629).
Yoichi Motohashi, An asymptotic formula in the theory of numbers, Acta Arith. 16 (1969/70), 255-264. MR0266884 (42 #1786).
Don Redmond, An asymptotic formula in the theory of numbers, Math. Ann. 224 (1976), no. 3, 247-268. MR0419386 (54 #7407).
E. C. Titchmarsh, Some problems in the analytic theory of numbers, The Quarterly Journal of Mathematics 1 (1942): 129-152.
FORMULA
a(n) ~ c * n * log(n)^8 /8!, where c = Product_{p prime} ((1-1/p)^4 * (1 + 4/p + 1/p^2)) = 0.049321673579400091761... (Titchmarsh, 1942). - Amiram Eldar, Apr 19 2024
MATHEMATICA
Accumulate[a[n_]:=DivisorSum[n, DivisorSigma[0, #]&]^2; Array[a, 60]] (* Vincenzo Librandi, Jan 11 2020 *)
PROG
(PARI) lista(nmax) = {my(s = 0); for(n = 1, nmax, s += vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]))^2; print1(s, ", ")); } \\ Amiram Eldar, Apr 19 2024
CROSSREFS
Sequence in context: A088409 A219959 A307344 * A369305 A065198 A033866
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 08 2020
STATUS
approved