login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369105
Primes p such that p+2 has only prime factors congruent to -1 modulo 4.
5
5, 7, 17, 19, 29, 31, 41, 47, 61, 67, 79, 97, 101, 127, 131, 137, 139, 149, 197, 199, 211, 229, 241, 251, 269, 277, 281, 307, 359, 379, 397, 421, 439, 461, 467, 487, 499, 521, 569, 571, 587, 601, 617, 619, 631, 641, 647, 691, 709, 719, 727, 751, 757, 787, 809, 811
OFFSET
1,1
COMMENTS
Jones and Zvonkin call these primes BCC primes, where BCC stands for Bujalance, Cirre, and Conder.
LINKS
E. Bujalance, F. J. Cirre, and M. D. E. Conder, Bounds on the orders of groups of automorphisms of a pseudo-real surface of given genus, Journal of the London Mathematical Society, Volume 101, Issue 2, p. 877-906, (2019).
Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See page 1.
MATHEMATICA
Select[Prime[Range[150]], PrimeQ[f=First/@FactorInteger[#+2]] == Table[True, {j, PrimeNu[#+2]}] && Mod[f, 4] == Table[3, {m, PrimeNu[#+2]}] &]
PROG
(PARI) is1(n) = {my(p = factor(n)[, 1]); for(i = 1, #p, if(p[i] % 4 == 1, return(0))); 1; };
lista(pmax) = forprime(p = 3, pmax, if(is1(p+2), print1(p, ", "))); \\ Amiram Eldar, Jun 03 2024
KEYWORD
nonn
AUTHOR
Stefano Spezia, Jan 13 2024
STATUS
approved