login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092242
Numbers that are congruent to {5, 7} (mod 12).
4
5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 101, 103, 113, 115, 125, 127, 137, 139, 149, 151, 161, 163, 173, 175, 185, 187, 197, 199, 209, 211, 221, 223, 233, 235, 245, 247, 257, 259, 269, 271, 281, 283, 293, 295, 305, 307, 317, 319, 329, 331
OFFSET
1,1
REFERENCES
L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 64.
FORMULA
1/5^2 + 1/7^2 + 1/17^2 + 1/19^2 + 1/29^2 + 1/31^2 + ... = Pi^2*(2 - sqrt(3))/36 = 0.073459792... [Jolley] - Gary W. Adamson, Dec 20 2006
a(n) = 12*n - a(n-1) - 12 (with a(1)=5). - Vincenzo Librandi, Nov 16 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 6*n - 3 - 2*(-1)^n.
G.f.: x*(5+2*x+5*x^2) / ( (1+x)*(x-1)^2 ). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2 - sqrt(3))*Pi/12. - Amiram Eldar, Dec 04 2021
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/12) (A120683).
Product_{n>=1} (1 + (-1)^n/a(n)) = (sqrt(3)/2)*sec(Pi/12) (= A010527 * A120683). (End)
MATHEMATICA
Select[Range[331], MemberQ[{5, 7}, Mod[#, 12]] &] (* Amiram Eldar, Dec 04 2021 *)
CROSSREFS
Fifth row of A092260.
Sequence in context: A099389 A099382 A163633 * A003630 A122565 A369105
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Feb 19 2004
EXTENSIONS
Edited and extended by Ray Chandler, Feb 21 2004
STATUS
approved