login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {5, 7} (mod 12).
4

%I #35 Nov 24 2024 01:51:27

%S 5,7,17,19,29,31,41,43,53,55,65,67,77,79,89,91,101,103,113,115,125,

%T 127,137,139,149,151,161,163,173,175,185,187,197,199,209,211,221,223,

%U 233,235,245,247,257,259,269,271,281,283,293,295,305,307,317,319,329,331

%N Numbers that are congruent to {5, 7} (mod 12).

%D L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 64.

%H Amiram Eldar, <a href="/A092242/b092242.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F 1/5^2 + 1/7^2 + 1/17^2 + 1/19^2 + 1/29^2 + 1/31^2 + ... = Pi^2*(2 - sqrt(3))/36 = 0.073459792... [Jolley] - _Gary W. Adamson_, Dec 20 2006

%F a(n) = 12*n - a(n-1) - 12 (with a(1)=5). - _Vincenzo Librandi_, Nov 16 2010

%F From _R. J. Mathar_, Oct 08 2011: (Start)

%F a(n) = 6*n - 3 - 2*(-1)^n.

%F G.f.: x*(5+2*x+5*x^2) / ( (1+x)*(x-1)^2 ). (End)

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (2 - sqrt(3))*Pi/12. - _Amiram Eldar_, Dec 04 2021

%F From _Amiram Eldar_, Nov 24 2024: (Start)

%F Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/12) (A120683).

%F Product_{n>=1} (1 + (-1)^n/a(n)) = (sqrt(3)/2)*sec(Pi/12) (= A010527 * A120683). (End)

%t Select[Range[331], MemberQ[{5, 7}, Mod[#, 12]] &] (* _Amiram Eldar_, Dec 04 2021 *)

%Y Fifth row of A092260.

%Y Cf. A010527, A120683.

%K nonn,easy

%O 1,1

%A _Giovanni Teofilatto_, Feb 19 2004

%E Edited and extended by _Ray Chandler_, Feb 21 2004