login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369067
Lexicographically earliest infinite sequence such that a(i) = a(j) => A369066(i) = A369066(j) for all i, j >= 0.
4
1, 2, 2, 1, 2, 3, 2, 3, 2, 4, 5, 1, 2, 6, 1, 7, 2, 8, 9, 1, 10, 11, 4, 9, 2, 6, 3, 1, 6, 1, 12, 5, 2, 13, 14, 1, 11, 15, 8, 11, 16, 17, 18, 1, 8, 19, 1, 20, 2, 6, 3, 1, 4, 4, 6, 4, 6, 5, 9, 1, 6, 8, 2, 20, 2, 21, 11, 1, 16, 22, 13, 15, 23, 24, 25, 1, 13, 21, 1, 26, 27, 28, 29, 1, 30, 29, 17, 31, 13, 21, 15, 1, 16
OFFSET
0,2
COMMENTS
Restricted growth sequence transform of A369066.
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A008836(n) = ((-1)^bigomega(n));
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A369069(n) = sumdiv(n, d, A008836(n/d)*A083345(d));
A369066(n) = A369069(A005940(1+n));
v369067 = rgs_transform(vector(1+up_to, n, A369066(n-1)));
A369067(n) = v369067[1+n];
CROSSREFS
Cf. also A366805 (compare the scatter plots).
Sequence in context: A331244 A316845 A120481 * A356647 A219644 A193676
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 16 2024
STATUS
approved