login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j) and A345000(i) = A345000(j), for all i, j >= 1.
3

%I #7 Jan 21 2024 18:10:41

%S 1,2,2,3,2,4,2,5,6,7,2,8,2,9,10,11,2,12,2,13,14,15,2,16,14,17,18,19,2,

%T 20,2,21,22,23,24,25,2,26,27,28,2,29,2,30,31,32,2,33,22,34,35,36,2,37,

%U 27,38,39,20,2,38,2,40,41,42,43,44,2,45,46,47,2,48,2,31,49,21,43,50,2,51,52,53,2,54,39,34,55,56,2,57

%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j) and A345000(i) = A345000(j), for all i, j >= 1.

%C Restricted growth sequence transform of the ordered pair [A003415(n), A345000(n)], or equally, of the pair [A003415(n), A369038(n)], or equally, of the pair [A345000(n), A369038(n)].

%C For all i, j >= 1:

%C A351236(i) = A351236(j) => a(i) = a(j),

%C a(i) = a(j) => A369034(i) = A369034(j),

%C a(i) = a(j) => A369036(i) = A369036(j).

%H Antti Karttunen, <a href="/A369047/b369047.txt">Table of n, a(n) for n = 1..65537</a>

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

%o A345000(n) = gcd(A003415(n),A003415(A276086(n)));

%o Aux369047(n) = [A003415(n), A345000(n)];

%o v369047 = rgs_transform(vector(up_to, n, Aux369047(n)));

%o A369047(n) = v369047[n];

%Y Cf. A003415, A345000, A369034, A369036, A369038.

%Y Cf. also A351236, A369051.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jan 21 2024