login
A369029
Exponential of Mangoldt function permuted by A253565.
5
1, 2, 3, 2, 5, 3, 1, 2, 7, 5, 1, 3, 1, 1, 1, 2, 11, 7, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 13, 11, 1, 7, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 17, 13, 1, 11, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,2
COMMENTS
Also LCM-transform of A253565 (when viewed as an offset-1 sequence), because A253565 has the S-property explained in the comments of A368900.
FORMULA
a(n) = A014963(A253565(n)).
a(0) = 1, and for n > 0, a(n) = lcm {1..A253565(n)} / lcm {1..A253565(n-1)}. [LCM-transform, see comments]
PROG
(PARI)
A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };
A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
A253550(n) = if(1==n, 1, (n/prime(A061395(n)))*prime(1+A061395(n)));
A253560(n) = if(1==n, 1, (n*prime(A061395(n))));
A253565(n) = if(n<2, (1+n), if(!(n%2), A253550(A253565(n/2)), A253560(A253565((n-1)/2))));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 12 2024
STATUS
approved