login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A368810
a(n) = numerator of Sum_{i=1..n} Sum_{j=1..n} (1/i + 1/j).
1
2, 6, 11, 50, 137, 147, 363, 1522, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 4873118, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387
OFFSET
1,1
MATHEMATICA
Numerator[Table[Sum[Sum[1/i + 1/j, {i, 1, n}], {j, 1, n}], {n, 1, 29}]]
PROG
(Python)
from sympy import harmonic
def A368810(n): return ((n<<1)*harmonic(n)).p # Chai Wah Wu, Feb 04 2024
CROSSREFS
Cf. A027611, A096620 (denominators), A193758.
Sequence in context: A302749 A130274 A352662 * A208893 A057294 A342544
KEYWORD
nonn,frac
AUTHOR
Mats Granvik, Jan 06 2024
STATUS
approved