login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368779
The number of prime factors of the cubefree numbers, counted with multiplicity.
1
0, 1, 1, 2, 1, 2, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 4, 1, 2, 2, 1, 3, 1, 3, 3, 2, 1, 2, 3, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 3, 1, 3, 2, 3, 1, 1, 2, 3, 3, 2, 3, 1, 2, 1, 4, 2, 2, 2, 1, 4, 2, 3, 2, 2, 2, 1, 3, 3, 4, 1, 3
OFFSET
1,4
LINKS
Rafael Jakimczuk and Matilde Lalín, The Number of Prime Factors on Average in Certain Integer Sequences, Journal of Integer Sequences, Vol. 25 (2022), Article 22.2.3.
FORMULA
a(n) = A001222(A004709(n)).
Sum_{A004709(k) <= x} a(k) = (1/zeta(3)) * x * log(log(x)) + O(x) (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
MATHEMATICA
f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], Total[e], Nothing]]; f[1] = 0; Array[f, 100]
PROG
(PARI) lista(max) = {my(e); for(k = 1, max, e = factor(k)[, 2]; if(k == 1 || vecmax(e) < 3, print1(vecsum(e), ", "))); }
(Python)
from sympy import mobius, integer_nthroot, primeomega
def A368779(n):
def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x, 3)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return primeomega(m) # Chai Wah Wu, Aug 06 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jan 05 2024
STATUS
approved