OFFSET
1,1
COMMENTS
Subsequence of A137257 and first differs from it at n = 51.
Numbers k such that gcd(k, A051903(k)) > 1.
Includes all the nonsquarefree terms of A336064.
The asymptotic density of this sequence is 1 - 1/zeta(2) - Sum_{k>=2} (1/(f(k+1, k) * zeta(k+1)) - 1/(f(k, k) * zeta(k))) = 0.24998449199080279703..., where f(e, m) = Product_{primes p|m} ((1-1/p^e)/(1-1/p)).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
MATHEMATICA
Select[Range[210], !CoprimeQ[#, Max[FactorInteger[#][[;; , 2]]]] &]
PROG
(PARI) lista(kmax) = for(k = 2, kmax, if(gcd(k, vecmax(factor(k)[, 2])) > 1, print1(k, ", ")));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jan 04 2024
STATUS
approved