login
A144976
Nonsquarefree numbers k such that k is divisible by the maximal exponent in the prime factorization of k.
1
4, 12, 16, 18, 20, 24, 27, 28, 36, 44, 48, 50, 52, 54, 60, 68, 72, 76, 80, 84, 90, 92, 98, 100, 108, 112, 116, 120, 124, 126, 132, 135, 140, 144, 148, 150, 156, 160, 164, 168, 172, 176, 180, 188, 189, 192, 196, 198, 204, 208, 212, 216, 220, 228, 234, 236, 240, 242, 244, 252, 256, 260, 264, 268, 270, 272
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is A336065 - A059956 = 0.24103009315... . - Amiram Eldar, Jan 05 2024
LINKS
FORMULA
{A013929(i): A051903(A013929(i)) | A013929(i)}. - R. J. Mathar, Oct 24 2008
MAPLE
A051903 := proc(n) local a, ifs, p, e; a := 1 ; max( seq(op(2, p), p=ifactors(n)[2]) ); end: isA013929 := proc(n) RETURN( not isprime(n) and A051903(n) > 1 ) ; end: isA144976 := proc(n) RETURN( isA013929(n) and (n mod A051903(n)) = 0 ); end: for n from 4 to 400 do if isA144976(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Oct 24 2008
MATHEMATICA
Select[Range[300], !SquareFreeQ[#]&&Divisible[#, Max[FactorInteger[#][[All, 2]]]]&] (* Harvey P. Dale, Jul 01 2017 *)
PROG
(PARI) is(n) = {my(e = factor(n)[, 2], emax); if(n == 1, 0, emax = vecmax(e); emax > 1 && !(n % emax)); } \\ Amiram Eldar, Jan 05 2024
CROSSREFS
Intersection of A013929 and A336064.
Sequence in context: A157849 A137257 A368715 * A119622 A367909 A280892
KEYWORD
nonn
AUTHOR
Giovanni Teofilatto, Sep 28 2008
EXTENSIONS
Adapted definition, inserted 18, 20 and extended. - R. J. Mathar, Oct 24 2008
STATUS
approved