login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368634
Expansion of g.f. A(x) satisfying A(x) = 1 + x*(3*A(x)^2 - A(-x)^2)/2.
5
1, 1, 4, 9, 52, 138, 904, 2581, 18020, 53622, 389112, 1189146, 8855560, 27571156, 209174544, 660249549, 5079702852, 16203796158, 126033559960, 405408758062, 3180991167640, 10301855821452, 81414086371696, 265150389430914, 2108026107021224, 6897985805906972, 55119920086104496
OFFSET
0,3
COMMENTS
Conjecture: a(n) is odd when n = 2^k - 1 for k >= 0 and even elsewhere.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1.a) A(x) = 1 + x*(3*A(x)^2 - A(-x)^2)/2.
(1.b) A(x) = 1 + x*(A(x)^2 + A(-x)^2)/2 + 2*x*(A(x)^2 - A(-x)^2)/2.
(2.a) (A(x) + A(-x))/2 = 1 + 2*x*(A(x)^2 - A(-x)^2)/2.
(2.b) (A(x) - A(-x))/2 = x*(A(x)^2 + A(-x)^2)/2.
(2.c) (A(x) + A(-x))/2 = 1/(1 - 2*x*(A(x) - A(-x))).
(3.a) A(x) = (1 - sqrt(1 - 4*x*A(-x) - 4*x^2*A(-x)^2)) / (2*x).
(3.b) A(-x) = (sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2) - 1) / (2*x).
(4.a) A(x) = (1 - sqrt(1-16*x + 8*x*A(-x) + 16*x^2*A(-x)^2)) / (4*x).
(4.b) A(-x) = (sqrt(1+16*x - 8*x*A(x) + 16*x^2*A(x)^2) - 1) / (4*x).
(5) 0 = (1-2*x) - (1-6*x)*A(x) - x*(3+8*x)*A(x)^2 + 12*x^2*A(x)^3 - 8*x^3*A(x)^4.
(6) x = (1 + 6*x*A(x) - 8*x^2*A(x)^2 - sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2))/4.
(7) A(x) = (1/x)*Series_Reversion( (1 + 6*x - 8*x^2 - sqrt(1 + 4*x - 4*x^2))/4 ).
(8.a) Sum_{n>=0} a(n) * (sqrt(3) - 1)^n/4^n = sqrt(3).
(8.b) Sum_{n>=0} a(n) * (1 - sqrt(3))^n/4^n = 1.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 9*x^3 + 52*x^4 + 138*x^5 + 904*x^6 + 2581*x^7 + 18020*x^8 + 53622*x^9 + 389112*x^10 + 1189146*x^11 + 8855560*x^12 + ...
RELATED SERIES.
We can see from the expansion of A(x)^2, which begins
A(x)^2 = 1 + 2*x + 9*x^2 + 26*x^3 + 138*x^4 + 452*x^5 + 2581*x^6 + 9010*x^7 + 53622*x^8 + 194556*x^9 + 1189146*x^10 + 4427780*x^11 + 27571156*x^12 + ...
that the odd bisection of A(x) is derived from the even bisection of A(x)^2:
(A(x) - A(-x))/2 = x + 9*x^3 + 138*x^5 + 2581*x^7 + 53622*x^9 + ...
(A(x)^2 + A(-x)^2)/2 = 1 + 9*x^2 + 138*x^4 + 2581*x^6 + 53622*x^8 + ...
and the even bisection of A(x) is derived from the odd bisection of A(x)^2:
(A(x) + A(-x))/2 = 1 + 4*x^2 + 52*x^4 + 904*x^6 + 18020*x^8 + 389112*x^10 + ...
(A(x)^2 - A(-x)^2)/2 = 2*x + 26*x^3 + 452*x^5 + 9010*x^7 + 194556*x^9 + ...
so that (A(x) + A(-x))/2 = 1 + 2*x * (A(x)^2 - A(-x)^2)/2.
SPECIFIC VALUES.
A(-r) = 1 and A(r) = sqrt(3) at r = (sqrt(3) - 1)/4 = 0.183012701892219....
PROG
(PARI) {a(n) = my(A=1+x, B); for(i=1, n, A=truncate(A)+x*O(x^i); B=subst(A, x, -x);
A = 1 + x*(A^2 + B^2)/2 + 2*x*(A^2 - B^2)/2 ; ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A); A = (1/x)*serreverse( (1 + 6*x - 8*x^2 - sqrt(1 + 4*x - 4*x^2 +x^2*O(x^n)))/4 ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 12 2024
STATUS
approved