login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368632
Expansion of e.g.f. A(x) satisfying A(x/A(x)^2) = exp(x*A(x)^2).
2
1, 1, 9, 217, 9521, 634321, 58026745, 6846238057, 998806698209, 174849870369313, 35915074166268521, 8507730512772340345, 2292605150744212481809, 695028316821630097748209, 234883073320203308189545049, 87808334177056337272289692681, 36075481332626610937457504918465
OFFSET
0,3
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x/A(x)^2) = exp(x*A(x)^2).
(2) A(x) = exp(x*B(x)^4) where B(x) = A(x*B(x)^2) = ( (1/x)*Series_Reversion(x/A(x)^2) )^(1/2).
(3) A(x/C(x)^4) = exp(x) where C(x) = A(x/C(x)^2) = ( x/Series_Reversion(x*A(x)^2) )^(1/2).
(4) A(x)^2 = F(2*x) where F(x/F(x)) = exp(x*F(x)) and F(x) is the e.g.f. of A367385.
EXAMPLE
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 217*x^3/3! + 9521*x^4/4! + 634321*x^5/5! + 58026745*x^6/6! + 6846238057*x^7/7! + 998806698209*x^8/8! + ...
where A(x/A(x)^2) = exp(x*A(x)^2) and
exp(x*A(x)^2) = 1 + x + 5*x^2/2! + 73*x^3/3! + 2265*x^4/4! + 119361*x^5/5! + 9255133*x^6/6! + 965731593*x^7/7! + ...
A(x)^2 = 1 + 2*x + 20*x^2/2! + 488*x^3/3! + 21264*x^4/4! + 1402912*x^5/5! + 127177792*x^6/6! + 14889247872*x^7/7! + ...
Also,
A(x) = exp(x*B(x)^4) where B(x) = A(x*B(x)^2) begins
B(x) = 1 + x + 13*x^2/2! + 409*x^3/3! + 21769*x^4/4! + 1680161*x^5/5! + 172774357*x^6/6! + 22446379705*x^7/7! + ...
B(x)^2 = 1 + 2*x + 28*x^2/2! + 896*x^3/3! + 47824*x^4/4! + 3684352*x^5/5! + 377546176*x^6/6! + ...
B(x)^4 = 1 + 4*x + 64*x^2/2! + 2128*x^3/3! + 114688*x^4/4! + 8826944*x^5/5! + 899745280*x^6/6! + ...
Further,
A(x/C(x)^4) = exp(x) where C(x) = A(x/C(x)^2) begins
C(x) = 1 + x + 5*x^2/2! + 97*x^3/3! + 3801*x^4/4! + 233681*x^5/5! + 20005213*x^6/6! + 2225362161*x^7/7! + ...
C(x)^2 = 1 + 2*x + 12*x^2/2! + 224*x^3/3! + 8528*x^4/4! + 515072*x^5/5! + 43572928*x^6/6! + ...
C(x)^4 = 1 + 4*x + 32*x^2/2! + 592*x^3/3! + 21504*x^4/4! + 1254464*x^5/5! + 103581184*x^6/6! + ...
PROG
(PARI) {a(n) = my(A=1+x); for(i=0, n, A = exp( x*((1/x)*serreverse( x/(A^2 + x*O(x^n)) ))^2 )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A152288 A179153 A197669 * A371684 A157692 A299548
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 01 2024
STATUS
approved