login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368278
Prime numbers that have an odd number of monotone Bacher representations (A368276).
1
2, 3, 11, 19, 29, 31, 37, 41, 47, 67, 73, 89, 97, 101, 103, 149, 151, 157, 163, 173, 179, 197, 229, 233, 251, 263, 269, 281, 283, 311, 349, 373, 383, 397, 409, 419, 433, 443, 463, 487, 491, 521, 523, 557, 577, 587, 601, 607, 619, 659, 661, 673, 677, 701, 719
OFFSET
1,1
COMMENTS
We call a ​quadruple (w, x, y, z) of nonnegative integers a monotone Bacher representation of n if and only if n = w*x + y*z and w <= x < y <= z.
LINKS
Roland Bacher, A quixotic proof of Fermat's two squares theorem for prime numbers, American Mathematical Monthly, Vol. 130, No. 9 (November 2023), 824-836; arXiv version, arXiv:2210.07657 [math.NT], 2022.
EXAMPLE
For n = 19, the 5 solutions are (w, x, y, z) = (0, 0, 1, 19), (1, 1, 2, 9), (1, 1, 3, 6), (1, 3, 4, 4), (2, 2, 3, 5).
MATHEMATICA
t[n_]:=t[n]=Select[Divisors[n], #^2<=n&];
A368276[n_]:=Total[t[n]]+Sum[Boole[wx<d*dx], {wx, Floor[n/2]}, {dx, t[wx]}, {d, t[n-wx]}];
Select[Prime[Range[200]], OddQ[A368276[#]]&] (* Paolo Xausa, Jan 02 2024 *)
PROG
(Julia)
using Nemo
println([n for n in 1:720 if isodd(A368276(n)) && is_prime(n)])
(Python)
from itertools import takewhile, islice
from sympy import divisors, nextprime
def A368278_gen(startvalue=2): # generator of terms >= startvalue
p = max(nextprime(startvalue-1), 2)
while True:
c = sum(takewhile(lambda x:x**2<=p, divisors(p))) & 1
for wx in range(1, (p>>1)+1):
for d1 in divisors(wx):
if d1**2 > wx:
break
m = p-wx
c = c+sum(1 for d in takewhile(lambda x:x**2<=m, divisors(m)) if wx<d*d1)&1
if c:
yield p
p = nextprime(p)
A368278_list = list(islice(A368278_gen(), 30)) # Chai Wah Wu, Dec 19 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 19 2023
STATUS
approved