The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A368066 a(n) = Product_{i=1..n, j=1..n} (i^2 + 6*i*j + j^2). 4
 1, 8, 73984, 10027173445632, 93867986947606492024406016, 185865459466664040069739311383413462872883200, 186896871826703385639703785281909582209471190408233074664996759142400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, for d >= -1, Product_{i=1..n, j=1..n} (i^2 + d*i*j + j^2) ~ c(d) * (d+2)^((d+2)*n*(n+1)/2) * n^(2*n^2 - 1/2 - d/6) / ((d/2 + sqrt(d^2/4 - 1))^(sqrt(d^2 - 4)*n*(n+1)/2) * exp(3*n^2)), where c(d) is a constant (dependent only on d). c(-1) = 3^(1/6) * exp(Pi/(6*sqrt(3))) * Gamma(1/3)^2 / (2*Pi)^(5/3). c(0) = exp(Pi/12) * Gamma(1/4) / (2*Pi)^(5/4). c(1) = 3^(5/12) * exp(Pi/(12*sqrt(3))) * Gamma(1/3) / (2*Pi)^(4/3). c(2) = A^2 / (2^(1/6) * exp(1/6) * Pi), where A = A074962. c(3) = 2^((sqrt(5) - 9)/6) * sqrt(5) * (1 + sqrt(5))^(1/2 - sqrt(5)/6) / Pi. c(4) = 2^((sqrt(3) - 1)/6) * 3^(13/24) * (1 + sqrt(3))^(1/2 - 1/sqrt(3)) / (Pi^(7/12) * Gamma(1/4)^(1/3) * Gamma(1/3)^(1/2)). c(5) = A368069. c(6) = 2^(25/8) * (1 + sqrt(2))^(3/4 - 2*sqrt(2)/3) / (Pi^(1/4) * Gamma(1/8) * Gamma(1/4)^(1/2)). Special (non-integer) case: Product_{i=1..n, j=1..n} (i^2 + (d + 1/d)*i*j + j^2) ~ A^(2/d) * (Product_{j=1..d} Gamma(j/d)^(2*j/d)) * (d+1)^((d/2 + 1 + 1/(2*d))*2*n*(n+1) + (d+1)^2/(6*d) + 1/6) * n^(2*n^2 - d/6 - 1/2 - 1/(6*d)) / ((2*Pi)^((d+1)/2) * exp(3*n^2 + 1/(6*d)) * d^((d+1)*n*(n+1) - 1/(6*d))), where A = A074962 is the Glaisher-Kinkelin constant. LINKS Table of n, a(n) for n=0..6. FORMULA a(n) ~ 2^(12*n*(n+1) + 25/8) * n^(2*n^2 - 3/2) / (Pi^(1/4) * Gamma(1/4)^(1/2) * Gamma(1/8) * (1 + sqrt(2))^(2*sqrt(2)*(6*n*(n+1) + 1)/3 - 3/4) * exp(3*n^2)). MATHEMATICA Table[Product[i^2 + 6*i*j + j^2, {i, 1, n}, {j, 1, n}], {n, 0, 7}] CROSSREFS Cf. A367543 (d=-1), A324403 (d=0), A367542 (d=1), A079478^2 (d=2), A368067 (d=3), A368064 (d=4), A368065 (d=5). Cf. A368069, A368068. Sequence in context: A063374 A067055 A137142 * A036535 A259167 A048565 Adjacent sequences: A368063 A368064 A368065 * A368067 A368068 A368069 KEYWORD nonn AUTHOR Vaclav Kotesovec, Dec 10 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 23:34 EDT 2024. Contains 373432 sequences. (Running on oeis4.)