The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A368066 a(n) = Product_{i=1..n, j=1..n} (i^2 + 6*i*j + j^2). 4
1, 8, 73984, 10027173445632, 93867986947606492024406016, 185865459466664040069739311383413462872883200, 186896871826703385639703785281909582209471190408233074664996759142400 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In general, for d >= -1, Product_{i=1..n, j=1..n} (i^2 + d*i*j + j^2) ~ c(d) * (d+2)^((d+2)*n*(n+1)/2) * n^(2*n^2 - 1/2 - d/6) / ((d/2 + sqrt(d^2/4 - 1))^(sqrt(d^2 - 4)*n*(n+1)/2) * exp(3*n^2)), where c(d) is a constant (dependent only on d).
c(-1) = 3^(1/6) * exp(Pi/(6*sqrt(3))) * Gamma(1/3)^2 / (2*Pi)^(5/3).
c(0) = exp(Pi/12) * Gamma(1/4) / (2*Pi)^(5/4).
c(1) = 3^(5/12) * exp(Pi/(12*sqrt(3))) * Gamma(1/3) / (2*Pi)^(4/3).
c(2) = A^2 / (2^(1/6) * exp(1/6) * Pi), where A = A074962.
c(3) = 2^((sqrt(5) - 9)/6) * sqrt(5) * (1 + sqrt(5))^(1/2 - sqrt(5)/6) / Pi.
c(4) = 2^((sqrt(3) - 1)/6) * 3^(13/24) * (1 + sqrt(3))^(1/2 - 1/sqrt(3)) / (Pi^(7/12) * Gamma(1/4)^(1/3) * Gamma(1/3)^(1/2)).
c(5) = A368069.
c(6) = 2^(25/8) * (1 + sqrt(2))^(3/4 - 2*sqrt(2)/3) / (Pi^(1/4) * Gamma(1/8) * Gamma(1/4)^(1/2)).
Special (non-integer) case: Product_{i=1..n, j=1..n} (i^2 + (d + 1/d)*i*j + j^2) ~ A^(2/d) * (Product_{j=1..d} Gamma(j/d)^(2*j/d)) * (d+1)^((d/2 + 1 + 1/(2*d))*2*n*(n+1) + (d+1)^2/(6*d) + 1/6) * n^(2*n^2 - d/6 - 1/2 - 1/(6*d)) / ((2*Pi)^((d+1)/2) * exp(3*n^2 + 1/(6*d)) * d^((d+1)*n*(n+1) - 1/(6*d))), where A = A074962 is the Glaisher-Kinkelin constant.
LINKS
FORMULA
a(n) ~ 2^(12*n*(n+1) + 25/8) * n^(2*n^2 - 3/2) / (Pi^(1/4) * Gamma(1/4)^(1/2) * Gamma(1/8) * (1 + sqrt(2))^(2*sqrt(2)*(6*n*(n+1) + 1)/3 - 3/4) * exp(3*n^2)).
MATHEMATICA
Table[Product[i^2 + 6*i*j + j^2, {i, 1, n}, {j, 1, n}], {n, 0, 7}]
CROSSREFS
Cf. A367543 (d=-1), A324403 (d=0), A367542 (d=1), A079478^2 (d=2), A368067 (d=3), A368064 (d=4), A368065 (d=5).
Sequence in context: A063374 A067055 A137142 * A036535 A259167 A048565
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 10 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 23:34 EDT 2024. Contains 373432 sequences. (Running on oeis4.)