login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367835
Expansion of e.g.f. 1/(2 - x - exp(2*x)).
7
1, 3, 22, 242, 3544, 64872, 1424976, 36517840, 1069533824, 35240047232, 1290137297152, 51955085596416, 2282489348834304, 108630445541684224, 5567741266098944000, 305752314499878569984, 17909736027185859100672, 1114647522476340562132992
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=1..n} 2^k * binomial(n,k) * a(n-k).
MAPLE
A367835 := proc(n)
option remember ;
if n = 0 then
1 ;
else
n*procname(n-1)+add(2^k*binomial(n, k)*procname(n-k), k=1..n) ;
end if;
end proc:
seq(A367835(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 2^j*binomial(i, j)*v[i-j+1])); v;
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 02 2023
STATUS
approved