OFFSET
1,1
COMMENTS
The maximal length of a run of consecutive exponentially odious numbers is 15 since numbers of the form 16*k + 8 are not exponentially odious. Thus all the terms of this sequence are of the form 16*k + 9 with k = 0, 4, 8, 10, 12, 24, 32, 34, 39, 40, ... .
The numbers of terms not exceeding 10^k for k = 1, 2, ... , are 1, 2, 15, 176, 1821, 18120, 181277, 1812917, 18129256, 181290721, ... . Apparently, the asymptotic density of this sequence exists and equals 0.018129... .
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
MATHEMATICA
expOdQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ[DigitCount[#, 2, 1]] &]; q[n_] := AllTrue[16*n + Range[9, 23], expOdQ]; 16 * Select[Range[0, 160], q] + 9
PROG
(PARI) isexpod(n) = {my(f = factor(n)); for(i=1, #f~, if (!(hammingweight(f[i, 2]) % 2), return (0))); 1; }
is(n) = {my(k = (n-9)/16); if(denominator(k) > 1, return(0)); for(i=9, 23, if(!isexpod(16*k + i), return(0))); 1; }
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Nov 27 2023
STATUS
approved