login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367488
Expansion of e.g.f. 1/(4 - 3*exp(x))^x.
1
1, 0, 6, 36, 444, 6540, 119520, 2593164, 65233392, 1867289868, 59939612040, 2132540249532, 83293357351248, 3543242182036284, 163062595422642552, 8071964230348189260, 427682380939864204224, 24149065480351703398572, 1447640087400503974386504
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A367490(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*sum(k=1, j-1, 3^k*(k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 19 2023
STATUS
approved