login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367487
Expansion of e.g.f. 1/(4 - 3*exp(x))^(x/2).
1
1, 0, 3, 18, 195, 2730, 47745, 1001742, 24523401, 686190258, 21601161015, 755533274826, 29066119327179, 1219715093642838, 55441103383640793, 2713468284508412430, 142269924567096468177, 7955396173559375208426, 472576083221524737100311
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = (1/2) * Sum_{k=1..n} A367490(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*sum(k=1, j-1, 3^k*(k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])/2); v;
CROSSREFS
Cf. A367490.
Sequence in context: A308134 A160707 A330764 * A377545 A277355 A135077
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 19 2023
STATUS
approved