OFFSET
1,1
LINKS
Maxie Dion Schmidt, A catalog of interesting and useful Lambert series identities, arXiv:2004.02976 [math.NT], 2020. See eq. (6.1c), p. 13.
Michael I. Shamos, Shamos's catalog of the real numbers, 2011. See p. 526.
FORMULA
Equals Sum_{k>=1} d(k)/((2^k-1)*(1-1/2^k)), where d(k) is the number of divisors of k (A000005).
EXAMPLE
3.60444734197194674489364847362358835600495487064998...
MAPLE
with(numtheory): evalf(sum(sigma(k)/(2^k-1), k = 1..infinity), 120)
MATHEMATICA
RealDigits[Sum[DivisorSigma[1, n]/(2^n-1), {n, 1, 500}], 10, 120][[1]]
PROG
(PARI) suminf(k = 1, sigma(k)/(2^k-1))
(PARI) suminf(k = 1, numdiv(k)/((2^k-1)*(1-1/2^k)))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Nov 14 2023
STATUS
approved