

A367128


a(1)=a(2)=1; thereafter a(n) is the radius of the sequence's digraph, where jumps from location i to i+a(i) are permitted (within 1..n1).


2



1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

The radius of the sequence's digraph is the smallest eccentricity of any vertex (location) in the graph. The eccentricity of a location i means the largest number of jumps in the shortest path from location i to any other location.


LINKS



EXAMPLE

To find a(5), we can look at the eccentricity of each location:
i = 1 2 3 4
a(i) = 1, 1, 1, 1
1 <> 1 <> 1 <> 1
eccentricity = 3 2 2 3
i=1 has eccentricity 3 because it requires up to 3 jumps to reach any other location (3 to i=4), and similarly i=4 has eccentricity 3 too.
i=2 and i=3 have eccentricity 2 as they require at most 2 jumps to reach anywhere.
The smallest eccentricity of any location is 2, which makes 2 the radius of the sequence's digraph, so a(5)=2.


PROG

(C) See links.


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



